Abstract base class for generators of polynomial systems#
AUTHOR:
Martin Albrecht <malb@informatik.uni-bremen.de>
- class sage.crypto.mq.mpolynomialsystemgenerator.MPolynomialSystemGenerator#
Bases:
SageObject
Abstract base class for generators of polynomial systems.
- block_order()#
Return a block term ordering for the equation systems generated by self.
EXAMPLES:
sage: from sage.crypto.mq.mpolynomialsystemgenerator import MPolynomialSystemGenerator sage: msg = MPolynomialSystemGenerator() sage: msg.block_order() Traceback (most recent call last): ... NotImplementedError
- polynomial_system(P=None, K=None)#
Return a tuple F,s for plaintext P and key K where F is an polynomial system and s a dictionary which maps key variables to their solutions.
- INPUT:
P – plaintext (vector, list) K – key (vector, list)
EXAMPLES:
sage: from sage.crypto.mq.mpolynomialsystemgenerator import MPolynomialSystemGenerator sage: msg = MPolynomialSystemGenerator() sage: msg.polynomial_system() Traceback (most recent call last): ... NotImplementedError
- random_element()#
Return random element. Usually this is a list of elements in the base field of length ‘blocksize’.
EXAMPLES:
sage: from sage.crypto.mq.mpolynomialsystemgenerator import MPolynomialSystemGenerator sage: msg = MPolynomialSystemGenerator() sage: msg.random_element() Traceback (most recent call last): ... NotImplementedError
- ring()#
Return the ring in which the system is defined.
EXAMPLES:
sage: from sage.crypto.mq.mpolynomialsystemgenerator import MPolynomialSystemGenerator sage: msg = MPolynomialSystemGenerator() sage: msg.ring() Traceback (most recent call last): ... NotImplementedError
- sbox()#
Return SBox object for self.
EXAMPLES:
sage: from sage.crypto.mq.mpolynomialsystemgenerator import MPolynomialSystemGenerator sage: msg = MPolynomialSystemGenerator() sage: msg.sbox() Traceback (most recent call last): ... AttributeError: '<class 'sage.crypto.mq.mpolynomialsystemgenerator.MPolynomialSystemGenerator'>' object has no attribute '_sbox'
- varformatstr(name)#
Return format string for a given name ‘name’ which is understood by print et al.
Such a format string is used to construct variable names. Typically those format strings are somewhat like ‘name%02d%02d’ such that rounds and offset in a block can be encoded.
- INPUT:
name – string
EXAMPLES:
sage: from sage.crypto.mq.mpolynomialsystemgenerator import MPolynomialSystemGenerator sage: msg = MPolynomialSystemGenerator() sage: msg.varformatstr('K') Traceback (most recent call last): ... NotImplementedError
- vars(name, round)#
Return a list of variables given a name ‘name’ and an index ‘round’.
- INPUT:
name – string round – integer index
EXAMPLES:
sage: from sage.crypto.mq.mpolynomialsystemgenerator import MPolynomialSystemGenerator sage: msg = MPolynomialSystemGenerator() sage: msg.vars('K',0) Traceback (most recent call last): ... NotImplementedError
- varstrs(name, round)#
Return a list of variable names given a name ‘name’ and an index ‘round’.
This function is typically used by self._vars.
- INPUT:
name – string round – integer index
EXAMPLES:
sage: from sage.crypto.mq.mpolynomialsystemgenerator import MPolynomialSystemGenerator sage: msg = MPolynomialSystemGenerator() sage: msg.varstrs('K', i) Traceback (most recent call last): ... NotImplementedError