Base class for polyhedra: Implementation of the ConvexSet_base
API#
Define methods that exist for convex sets, but not constructions such as dilation or product.
- class sage.geometry.polyhedron.base1.Polyhedron_base1(parent, Vrep, Hrep, Vrep_minimal=None, Hrep_minimal=None, pref_rep=None, mutable=False, **kwds)#
Bases:
Polyhedron_base0
,ConvexSet_closed
Convex set methods for polyhedra, but not constructions such as dilation or product.
See
sage.geometry.polyhedron.base.Polyhedron_base
.- Hrepresentation_space()#
Return the linear space containing the H-representation vectors.
OUTPUT:
A free module over the base ring of dimension
ambient_dim()
+ 1.EXAMPLES:
sage: poly_test = Polyhedron(vertices = [[1,0,0,0],[0,1,0,0]]) sage: poly_test.Hrepresentation_space() Ambient free module of rank 5 over the principal ideal domain Integer Ring
- Vrepresentation_space()#
Return the ambient free module.
OUTPUT:
A free module over the base ring of dimension
ambient_dim()
.EXAMPLES:
sage: poly_test = Polyhedron(vertices = [[1,0,0,0],[0,1,0,0]]) sage: poly_test.Vrepresentation_space() Ambient free module of rank 4 over the principal ideal domain Integer Ring sage: poly_test.ambient_space() is poly_test.Vrepresentation_space() True
- a_maximal_chain()#
Return a maximal chain of the face lattice in increasing order.
Subclasses must provide an implementation of this method.
EXAMPLES:
sage: from sage.geometry.polyhedron.base1 import Polyhedron_base1 sage: P = polytopes.cube() sage: Polyhedron_base1.a_maximal_chain <abstract method a_maximal_chain at ...>
- ambient(base_field=None)#
Return the ambient vector space.
It is the ambient free module (
Vrepresentation_space()
) tensored with a field.INPUT:
base_field
– (default: the fraction field of the base ring) a field.
EXAMPLES:
sage: poly_test = Polyhedron(vertices = [[1,0,0,0],[0,1,0,0]]) sage: poly_test.ambient_vector_space() Vector space of dimension 4 over Rational Field sage: poly_test.ambient_vector_space() is poly_test.ambient() True sage: poly_test.ambient_vector_space(AA) # optional - sage.rings.number_field Vector space of dimension 4 over Algebraic Real Field sage: poly_test.ambient_vector_space(RDF) Vector space of dimension 4 over Real Double Field sage: poly_test.ambient_vector_space(SR) # optional - sage.symbolic Vector space of dimension 4 over Symbolic Ring
- ambient_dim()#
Return the dimension of the ambient space.
EXAMPLES:
sage: poly_test = Polyhedron(vertices = [[1,0,0,0],[0,1,0,0]]) sage: poly_test.ambient_dim() 4
- ambient_space()#
Return the ambient free module.
OUTPUT:
A free module over the base ring of dimension
ambient_dim()
.EXAMPLES:
sage: poly_test = Polyhedron(vertices = [[1,0,0,0],[0,1,0,0]]) sage: poly_test.Vrepresentation_space() Ambient free module of rank 4 over the principal ideal domain Integer Ring sage: poly_test.ambient_space() is poly_test.Vrepresentation_space() True
- ambient_vector_space(base_field=None)#
Return the ambient vector space.
It is the ambient free module (
Vrepresentation_space()
) tensored with a field.INPUT:
base_field
– (default: the fraction field of the base ring) a field.
EXAMPLES:
sage: poly_test = Polyhedron(vertices = [[1,0,0,0],[0,1,0,0]]) sage: poly_test.ambient_vector_space() Vector space of dimension 4 over Rational Field sage: poly_test.ambient_vector_space() is poly_test.ambient() True sage: poly_test.ambient_vector_space(AA) # optional - sage.rings.number_field Vector space of dimension 4 over Algebraic Real Field sage: poly_test.ambient_vector_space(RDF) Vector space of dimension 4 over Real Double Field sage: poly_test.ambient_vector_space(SR) # optional - sage.symbolic Vector space of dimension 4 over Symbolic Ring
- an_affine_basis()#
Return points in
self
that form a basis for the affine span ofself
.This implementation of the method
an_affine_basis()
for polytopes guarantees the following:All points are vertices.
The basis is obtained by considering a maximal chain of faces in the face lattice and picking for each cover relation one vertex that is in the difference. Thus this method is independent of the concrete realization of the polytope.
For unbounded polyhedra, the result may contain arbitrary points of
self
, not just vertices.EXAMPLES:
sage: P = polytopes.cube() sage: P.an_affine_basis() [A vertex at (-1, -1, -1), A vertex at (1, -1, -1), A vertex at (1, -1, 1), A vertex at (1, 1, -1)] sage: P = polytopes.permutahedron(5) sage: P.an_affine_basis() [A vertex at (1, 2, 3, 5, 4), A vertex at (2, 1, 3, 5, 4), A vertex at (1, 3, 2, 5, 4), A vertex at (4, 1, 3, 5, 2), A vertex at (4, 2, 5, 3, 1)]
Unbounded polyhedra:
sage: p = Polyhedron(vertices=[(0, 0)], rays=[(1,0), (0,1)]) sage: p.an_affine_basis() [A vertex at (0, 0), (1, 0), (0, 1)] sage: p = Polyhedron(vertices=[(2, 1)], rays=[(1,0), (0,1)]) sage: p.an_affine_basis() [A vertex at (2, 1), (3, 1), (2, 2)] sage: p = Polyhedron(vertices=[(2, 1)], rays=[(1,0)], lines=[(0,1)]) sage: p.an_affine_basis() [(2, 1), A vertex at (2, 0), (3, 0)]
- contains(point)#
Test whether the polyhedron contains the given
point
.See also
INPUT:
point
– coordinates of a point (an iterable)
OUTPUT:
Boolean.
EXAMPLES:
sage: P = Polyhedron(vertices=[[1,1],[1,-1],[0,0]]) sage: P.contains( [1,0] ) True sage: P.contains( P.center() ) # true for any convex set True
As a shorthand, one may use the usual
in
operator:sage: P.center() in P True sage: [-1,-1] in P False
The point need not have coordinates in the same field as the polyhedron:
sage: ray = Polyhedron(vertices=[(0,0)], rays=[(1,0)], base_ring=QQ) sage: ray.contains([sqrt(2)/3,0]) # irrational coordinates are ok # optional - sage.symbolic True sage: a = var('a') # optional - sage.symbolic sage: ray.contains([a,0]) # a might be negative! # optional - sage.symbolic False sage: assume(a>0) # optional - sage.symbolic sage: ray.contains([a,0]) # optional - sage.symbolic True sage: ray.contains(['hello', 'kitty']) # no common ring for coordinates False
The empty polyhedron needs extra care, see trac ticket #10238:
sage: empty = Polyhedron(); empty The empty polyhedron in ZZ^0 sage: empty.contains([]) False sage: empty.contains([0]) # not a point in QQ^0 False sage: full = Polyhedron(vertices=[()]); full A 0-dimensional polyhedron in ZZ^0 defined as the convex hull of 1 vertex sage: full.contains([]) True sage: full.contains([0]) False
- dim()#
Return the dimension of the polyhedron.
OUTPUT:
-1 if the polyhedron is empty, otherwise a non-negative integer.
EXAMPLES:
sage: simplex = Polyhedron(vertices = [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]) sage: simplex.dim() 3 sage: simplex.ambient_dim() 4
The empty set is a special case (trac ticket #12193):
sage: P1=Polyhedron(vertices=[[1,0,0],[0,1,0],[0,0,1]]) sage: P2=Polyhedron(vertices=[[2,0,0],[0,2,0],[0,0,2]]) sage: P12 = P1.intersection(P2) sage: P12 The empty polyhedron in ZZ^3 sage: P12.dim() -1
- dimension()#
Return the dimension of the polyhedron.
OUTPUT:
-1 if the polyhedron is empty, otherwise a non-negative integer.
EXAMPLES:
sage: simplex = Polyhedron(vertices = [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]) sage: simplex.dim() 3 sage: simplex.ambient_dim() 4
The empty set is a special case (trac ticket #12193):
sage: P1=Polyhedron(vertices=[[1,0,0],[0,1,0],[0,0,1]]) sage: P2=Polyhedron(vertices=[[2,0,0],[0,2,0],[0,0,2]]) sage: P12 = P1.intersection(P2) sage: P12 The empty polyhedron in ZZ^3 sage: P12.dim() -1
- interior()#
The interior of
self
.OUTPUT:
either an empty polyhedron or an instance of
RelativeInterior
EXAMPLES:
If the polyhedron is full-dimensional, the result is the same as that of
relative_interior()
:sage: P_full = Polyhedron(vertices=[[0,0],[1,1],[1,-1]]) sage: P_full.interior() Relative interior of a 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices
If the polyhedron is of strictly smaller dimension than the ambient space, its interior is empty:
sage: P_lower = Polyhedron(vertices=[[0,1], [0,-1]]) sage: P_lower.interior() The empty polyhedron in ZZ^2
- interior_contains(point)#
Test whether the interior of the polyhedron contains the given
point
.See also
INPUT:
point
– coordinates of a point
OUTPUT:
True
orFalse
.EXAMPLES:
sage: P = Polyhedron(vertices=[[0,0],[1,1],[1,-1]]) sage: P.contains( [1,0] ) True sage: P.interior_contains( [1,0] ) False
If the polyhedron is of strictly smaller dimension than the ambient space, its interior is empty:
sage: P = Polyhedron(vertices=[[0,1],[0,-1]]) sage: P.contains( [0,0] ) True sage: P.interior_contains( [0,0] ) False
The empty polyhedron needs extra care, see trac ticket #10238:
sage: empty = Polyhedron(); empty The empty polyhedron in ZZ^0 sage: empty.interior_contains([]) False
- is_empty()#
Test whether the polyhedron is the empty polyhedron
OUTPUT:
Boolean.
EXAMPLES:
sage: P = Polyhedron(vertices=[[1,0,0],[0,1,0],[0,0,1]]); P A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 3 vertices sage: P.is_empty(), P.is_universe() (False, False) sage: Q = Polyhedron(vertices=()); Q The empty polyhedron in ZZ^0 sage: Q.is_empty(), Q.is_universe() (True, False) sage: R = Polyhedron(lines=[(1,0),(0,1)]); R A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex and 2 lines sage: R.is_empty(), R.is_universe() (False, True)
- is_relatively_open()#
Return whether
self
is relatively open.OUTPUT:
Boolean.
EXAMPLES:
sage: P = Polyhedron(vertices=[(1,0), (-1,0)]); P A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: P.is_relatively_open() False sage: P0 = Polyhedron(vertices=[[1, 2]]); P0 A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex sage: P0.is_relatively_open() True sage: Empty = Polyhedron(ambient_dim=2); Empty The empty polyhedron in ZZ^2 sage: Empty.is_relatively_open() True sage: Line = Polyhedron(vertices=[(1, 1)], lines=[(1, 0)]); Line A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 line sage: Line.is_relatively_open() True
- is_universe()#
Test whether the polyhedron is the whole ambient space
OUTPUT:
Boolean.
EXAMPLES:
sage: P = Polyhedron(vertices=[[1,0,0],[0,1,0],[0,0,1]]); P A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 3 vertices sage: P.is_empty(), P.is_universe() (False, False) sage: Q = Polyhedron(vertices=()); Q The empty polyhedron in ZZ^0 sage: Q.is_empty(), Q.is_universe() (True, False) sage: R = Polyhedron(lines=[(1,0),(0,1)]); R A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex and 2 lines sage: R.is_empty(), R.is_universe() (False, True)
- relative_interior()#
Return the relative interior of
self
.EXAMPLES:
sage: P = Polyhedron(vertices=[(1,0), (-1,0)]) sage: ri_P = P.relative_interior(); ri_P Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: (0, 0) in ri_P True sage: (1, 0) in ri_P False sage: P0 = Polyhedron(vertices=[[1, 2]]) sage: P0.relative_interior() is P0 True sage: Empty = Polyhedron(ambient_dim=2) sage: Empty.relative_interior() is Empty True sage: Line = Polyhedron(vertices=[(1, 1)], lines=[(1, 0)]) sage: Line.relative_interior() is Line True
- relative_interior_contains(point)#
Test whether the relative interior of the polyhedron contains the given
point
.See also
INPUT:
point
– coordinates of a point
OUTPUT:
True
orFalse
EXAMPLES:
sage: P = Polyhedron(vertices=[(1,0), (-1,0)]) sage: P.contains( (0,0) ) True sage: P.interior_contains( (0,0) ) False sage: P.relative_interior_contains( (0,0) ) True sage: P.relative_interior_contains( (1,0) ) False
The empty polyhedron needs extra care, see trac ticket #10238:
sage: empty = Polyhedron(); empty The empty polyhedron in ZZ^0 sage: empty.relative_interior_contains([]) False
- representative_point()#
Return a “generic” point.
OUTPUT:
A point as a coordinate vector. The point is chosen to be interior if possible. If the polyhedron is not full-dimensional, the point is in the relative interior. If the polyhedron is zero-dimensional, its single point is returned.
EXAMPLES:
sage: p = Polyhedron(vertices=[(3,2)], rays=[(1,-1)]) sage: p.representative_point() (4, 1) sage: p.center() (3, 2) sage: Polyhedron(vertices=[(3,2)]).representative_point() (3, 2)