Voronoi diagram#
This module provides the class VoronoiDiagram
for computing the
Voronoi diagram of a finite list of points in \(\RR^d\).
- class sage.geometry.voronoi_diagram.VoronoiDiagram(points)#
Bases:
SageObject
Base class for the Voronoi diagram.
Compute the Voronoi diagram of a list of points.
INPUT:
points
– a list of points. Any valid input for thePointConfiguration
will do.
OUTPUT:
An instance of the VoronoiDiagram class.
EXAMPLES:
Get the Voronoi diagram for some points in \(\RR^3\):
sage: V = VoronoiDiagram([[1, 3, .3], [2, -2, 1], [-1, 2, -.1]]); V The Voronoi diagram of 3 points of dimension 3 in the Real Double Field sage: VoronoiDiagram([]) The empty Voronoi diagram.
Get the Voronoi diagram of a regular pentagon in
AA^2
. All cells meet at the origin:sage: DV = VoronoiDiagram([[AA(c) for c in v] for v in polytopes.regular_polygon(5).vertices_list()]); DV # optional - sage.rings.number_field The Voronoi diagram of 5 points of dimension 2 in the Algebraic Real Field sage: all(P.contains([0, 0]) for P in DV.regions().values()) # optional - sage.rings.number_field True sage: any(P.interior_contains([0, 0]) for P in DV.regions().values()) # optional - sage.rings.number_field False
If the vertices are not converted to
AA
before, the method throws an error:sage: polytopes.dodecahedron().vertices_list()[0][0].parent() # optional - sage.rings.number_field Number Field in sqrt5 with defining polynomial x^2 - 5 with sqrt5 = 2.236067977499790? sage: VoronoiDiagram(polytopes.dodecahedron().vertices_list()) # optional - sage.rings.number_field Traceback (most recent call last): ... NotImplementedError: Base ring of the Voronoi diagram must be one of QQ, RDF, AA.
ALGORITHM:
We use hyperplanes tangent to the paraboloid one dimension higher to get a convex polyhedron and then project back to one dimension lower.
Todo
The dual construction: Delaunay triangulation
improve 2d-plotting
implement 3d-plotting
more general constructions, like Voroi diagrams with weights (power diagrams)
REFERENCES:
[Mat2002] Ch.5.7, p.118.
AUTHORS:
Moritz Firsching (2012-09-21)
- ambient_dim()#
Return the ambient dimension of the points.
EXAMPLES:
sage: V = VoronoiDiagram([[.5, 3], [2, 5], [4, 5], [4, -1]]) sage: V.ambient_dim() 2 sage: V = VoronoiDiagram([[1, 2, 3, 4, 5, 6]]); V.ambient_dim() 6
- base_ring()#
Return the base_ring of the regions of the Voronoi diagram.
EXAMPLES:
sage: V = VoronoiDiagram([[1, 3, 1], [2, -2, 1], [-1, 2, 1/2]]); V.base_ring() Rational Field sage: V = VoronoiDiagram([[1, 3.14], [2, -2/3], [-1, 22]]); V.base_ring() Real Double Field sage: V = VoronoiDiagram([[1, 3], [2, 4]]); V.base_ring() Rational Field
- plot(cell_colors=None, **kwds)#
Return a graphical representation for 2-dimensional Voronoi diagrams.
INPUT:
cell_colors
– (default:None
) provide the colors for the cells, either as dictionary. Randomly colored cells are provided withNone
.**kwds
– optional keyword parameters, passed on as arguments for plot().
OUTPUT:
A graphics object.
EXAMPLES:
sage: P = [[0.671, 0.650], [0.258, 0.767], [0.562, 0.406], [0.254, 0.709], [0.493, 0.879]] sage: V = VoronoiDiagram(P); S=V.plot() # optional - sage.plot sage: show(S, xmin=0, xmax=1, ymin=0, ymax=1, aspect_ratio=1, axes=false) # optional - sage.plot sage: S=V.plot(cell_colors={0:'red', 1:'blue', 2:'green', 3:'white', 4:'yellow'}) # optional - sage.plot sage: show(S, xmin=0, xmax=1, ymin=0, ymax=1, aspect_ratio=1, axes=false) # optional - sage.plot sage: S=V.plot(cell_colors=['red','blue','red','white', 'white']) # optional - sage.plot sage: show(S, xmin=0, xmax=1, ymin=0, ymax=1, aspect_ratio=1, axes=false) # optional - sage.plot sage: S=V.plot(cell_colors='something else') # optional - sage.plot Traceback (most recent call last): ... AssertionError: 'cell_colors' must be a list or a dictionary
Trying to plot a Voronoi diagram of dimension other than 2 gives an error:
sage: VoronoiDiagram([[1, 2, 3], [6, 5, 4]]).plot() # optional - sage.plot Traceback (most recent call last): ... NotImplementedError: Plotting of 3-dimensional Voronoi diagrams not implemented
- points()#
Return the input points (as a PointConfiguration).
EXAMPLES:
sage: V = VoronoiDiagram([[.5, 3], [2, 5], [4, 5], [4, -1]]); V.points() A point configuration in affine 2-space over Real Field with 53 bits of precision consisting of 4 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular.
- regions()#
Return the Voronoi regions of the Voronoi diagram as a dictionary of polyhedra.
EXAMPLES:
sage: V = VoronoiDiagram([[1, 3, .3], [2, -2, 1], [-1, 2, -.1]]) sage: P = V.points() sage: V.regions() == {P[0]: Polyhedron(base_ring=RDF, lines=[(-RDF(0.375), RDF(0.13888888890000001), RDF(1.5277777779999999))], ....: rays=[(RDF(9), -RDF(1), -RDF(20)), (RDF(4.5), RDF(1), -RDF(25))], ....: vertices=[(-RDF(1.1074999999999999), RDF(1.149444444), RDF(9.0138888890000004))]), ....: P[1]: Polyhedron(base_ring=RDF, lines=[(-RDF(0.375), RDF(0.13888888890000001), RDF(1.5277777779999999))], ....: rays=[(RDF(9), -RDF(1), -RDF(20)), (-RDF(2.25), -RDF(1), RDF(2.5))], ....: vertices=[(-RDF(1.1074999999999999), RDF(1.149444444), RDF(9.0138888890000004))]), ....: P[2]: Polyhedron(base_ring=RDF, lines=[(-RDF(0.375), RDF(0.13888888890000001), RDF(1.5277777779999999))], ....: rays=[(RDF(4.5), RDF(1), -RDF(25)), (-RDF(2.25), -RDF(1), RDF(2.5))], ....: vertices=[(-RDF(1.1074999999999999), RDF(1.149444444), RDF(9.0138888890000004))])} True