Base class for polyhedra: Methods for triangulation and volume computation#
- class sage.geometry.polyhedron.base7.Polyhedron_base7(parent, Vrep, Hrep, Vrep_minimal=None, Hrep_minimal=None, pref_rep=None, mutable=False, **kwds)#
Bases:
Polyhedron_base6
Methods related to triangulation and volume.
- centroid(engine='auto', **kwds)#
Return the center of the mass of the polytope.
The mass is taken with respect to the induced Lebesgue measure, see
volume()
.If the polyhedron is not compact, a
NotImplementedError
is raised.INPUT:
engine
– either ‘auto’ (default), ‘internal’, ‘TOPCOM’, or ‘normaliz’. The ‘internal’ and ‘TOPCOM’ instruct this package to always use its own triangulation algorithms or TOPCOM’s algorithms, respectively. By default (‘auto’), TOPCOM is used if it is available and internal routines otherwise.**kwds
– keyword arguments that are passed to the triangulation engine (seetriangulate()
).
OUTPUT: The centroid as vector.
ALGORITHM:
We triangulate the polytope and find the barycenter of the simplices. We add the individual barycenters weighted by the fraction of the total mass.
EXAMPLES:
sage: P = polytopes.hypercube(2).pyramid() sage: P.centroid() (1/4, 0, 0) sage: P = polytopes.associahedron(['A',2]) sage: P.centroid() (2/21, 2/21) sage: P = polytopes.permutahedron(4, backend='normaliz') # optional - pynormaliz sage: P.centroid() # optional - pynormaliz (5/2, 5/2, 5/2, 5/2)
The method is not implemented for unbounded polyhedra:
sage: P = Polyhedron(vertices=[(0,0)],rays=[(1,0),(0,1)]) sage: P.centroid() Traceback (most recent call last): ... NotImplementedError: the polyhedron is not compact
The centroid of an empty polyhedron is not defined:
sage: Polyhedron().centroid() Traceback (most recent call last): ... ZeroDivisionError: rational division by zero
- integrate(function, measure='ambient', **kwds)#
Return the integral of
function
over this polytope.INPUT:
self
– Polyhedronfunction
– a multivariate polynomial or a valid LattE description string for polynomialsmeasure
– string, the measure to useAllowed values are:
ambient
(default): Lebesgue measure of ambient space,induced
: Lebesgue measure of the affine hull,induced_nonnormalized
: Lebesgue measure of the affine hull without the normalization by \(\sqrt{\det(A^\top A)}\) (with \(A\) being the affine transformation matrix; seeaffine_hull()
).
**kwds
– additional keyword arguments that are passed to the engine
OUTPUT:
The integral of the polynomial over the polytope
Note
The polytope triangulation algorithm is used. This function depends on LattE (i.e., the
latte_int
optional package).EXAMPLES:
sage: P = polytopes.cube() sage: x, y, z = polygens(QQ, 'x, y, z') sage: P.integrate(x^2*y^2*z^2) # optional - latte_int 8/27
If the polyhedron has floating point coordinates, an inexact result can be obtained if we transform to rational coordinates:
sage: P = 1.4142*polytopes.cube() sage: P_QQ = Polyhedron(vertices=[[QQ(vi) for vi in v] for v in P.vertex_generator()]) sage: RDF(P_QQ.integrate(x^2*y^2*z^2)) # optional - latte_int 6.703841212195228
Integral over a non full-dimensional polytope:
sage: x, y = polygens(QQ, 'x, y') sage: P = Polyhedron(vertices=[[0,0],[1,1]]) sage: P.integrate(x*y) # optional - latte_int 0 sage: ixy = P.integrate(x*y, measure='induced'); ixy # optional - latte_int 0.4714045207910317? sage: ixy.parent() # optional - latte_int Algebraic Real Field
Convert to a symbolic expression:
sage: ixy.radical_expression() # optional - latte_int 1/3*sqrt(2)
Another non full-dimensional polytope integration:
sage: R.<x, y, z> = QQ[] sage: P = polytopes.simplex(2) sage: V = AA(P.volume(measure='induced')); V.radical_expression() 1/2*sqrt(3) sage: P.integrate(R(1), measure='induced') == V # optional - latte_int True
Computing the mass center:
sage: (P.integrate(x, measure='induced') / V).radical_expression() # optional - latte_int 1/3 sage: (P.integrate(y, measure='induced') / V).radical_expression() # optional - latte_int 1/3 sage: (P.integrate(z, measure='induced') / V).radical_expression() # optional - latte_int 1/3
- triangulate(engine='auto', connected=True, fine=False, regular=None, star=None)#
Return a triangulation of the polytope.
INPUT:
engine
– either ‘auto’ (default), ‘internal’, ‘TOPCOM’, or ‘normaliz’. The ‘internal’ and ‘TOPCOM’ instruct this package to always use its own triangulation algorithms or TOPCOM’s algorithms, respectively. By default (‘auto’), TOPCOM is used if it is available and internal routines otherwise.
The remaining keyword parameters are passed through to the
PointConfiguration
constructor:connected
– boolean (default:True
). Whether the triangulations should be connected to the regular triangulations via bistellar flips. These are much easier to compute than all triangulations.fine
– boolean (default:False
). Whether the triangulations must be fine, that is, make use of all points of the configuration.regular
– boolean orNone
(default:None
). Whether the triangulations must be regular. A regular triangulation is one that is induced by a piecewise-linear convex support function. In other words, the shadows of the faces of a polyhedron in one higher dimension.True
: Only regular triangulations.False
: Only non-regular triangulations.None
(default): Both kinds of triangulation.
star
– eitherNone
(default) or a point. Whether the triangulations must be star. A triangulation is star if all maximal simplices contain a common point. The central point can be specified by its index (an integer) in the given points or by its coordinates (anything iterable.)
OUTPUT:
A triangulation of the convex hull of the vertices as a
Triangulation
. The indices in the triangulation correspond to theVrepresentation()
objects.EXAMPLES:
sage: cube = polytopes.hypercube(3) sage: triangulation = cube.triangulate( ....: engine='internal') # to make doctest independent of TOPCOM sage: triangulation (<0,1,2,7>, <0,1,5,7>, <0,2,3,7>, <0,3,4,7>, <0,4,5,7>, <1,5,6,7>) sage: simplex_indices = triangulation[0]; simplex_indices (0, 1, 2, 7) sage: simplex_vertices = [ cube.Vrepresentation(i) for i in simplex_indices ] sage: simplex_vertices [A vertex at (1, -1, -1), A vertex at (1, 1, -1), A vertex at (1, 1, 1), A vertex at (-1, 1, 1)] sage: Polyhedron(simplex_vertices) A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 4 vertices
It is possible to use
'normaliz'
as an engine. For this, the polyhedron should have the backend set to normaliz:sage: P = Polyhedron(vertices=[[0,0,1],[1,0,1],[0,1,1],[1,1,1]],backend='normaliz') # optional - pynormaliz sage: P.triangulate(engine='normaliz') # optional - pynormaliz (<0,1,2>, <1,2,3>) sage: P = Polyhedron(vertices=[[0,0,1],[1,0,1],[0,1,1],[1,1,1]]) sage: P.triangulate(engine='normaliz') Traceback (most recent call last): ... TypeError: the polyhedron's backend should be 'normaliz'
The normaliz engine can triangulate pointed cones:
sage: C1 = Polyhedron(rays=[[0,0,1],[1,0,1],[0,1,1],[1,1,1]],backend='normaliz') # optional - pynormaliz sage: C1.triangulate(engine='normaliz') # optional - pynormaliz (<0,1,2>, <1,2,3>) sage: C2 = Polyhedron(rays=[[1,0,1],[0,0,1],[0,1,1],[1,1,10/9]],backend='normaliz') # optional - pynormaliz sage: C2.triangulate(engine='normaliz') # optional - pynormaliz (<0,1,2>, <1,2,3>)
They can also be affine cones:
sage: K = Polyhedron(vertices=[[1,1,1]],rays=[[1,0,0],[0,1,0],[1,1,-1],[1,1,1]], backend='normaliz') # optional - pynormaliz sage: K.triangulate(engine='normaliz') # optional - pynormaliz (<0,1,2>, <0,1,3>)
- volume(measure='ambient', engine='auto', **kwds)#
Return the volume of the polytope.
INPUT:
measure
– string. The measure to use. Allowed values are:ambient
(default): Lebesgue measure of ambient space (volume)induced
: Lebesgue measure of the affine hull (relative volume)induced_rational
: Scaling of the Lebesgue measure for rational polytopes, such that the unit hypercube has volume 1induced_lattice
: Scaling of the Lebesgue measure, such that the volume of the hypercube is factorial(n)
engine
– string. The backend to use. Allowed values are:'auto'
(default): choose engine according to measure'internal'
: seetriangulate()
'TOPCOM'
: seetriangulate()
'lrs'
: use David Avis’s lrs program (optional)'latte'
: use LattE integrale program (optional)'normaliz'
: use Normaliz program (optional)
**kwds
– keyword arguments that are passed to the triangulation engine
OUTPUT:
The volume of the polytope
EXAMPLES:
sage: polytopes.hypercube(3).volume() 8 sage: (polytopes.hypercube(3)*2).volume() 64 sage: polytopes.twenty_four_cell().volume() 2
Volume of the same polytopes, using the optional package lrslib (which requires a rational polytope):
sage: I3 = polytopes.hypercube(3) sage: I3.volume(engine='lrs') # optional - lrslib 8 sage: C24 = polytopes.twenty_four_cell() sage: C24.volume(engine='lrs') # optional - lrslib 2
If the base ring is exact, the answer is exact:
sage: P5 = polytopes.regular_polygon(5) # optional - sage.rings.number_field sage: P5.volume() # optional - sage.rings.number_field 2.377641290737884? sage: polytopes.icosahedron().volume() # optional - sage.rings.number_field 5/12*sqrt5 + 5/4 sage: numerical_approx(_) # abs tol 1e9 # optional - sage.rings.number_field 2.18169499062491
When considering lower-dimensional polytopes, we can ask for the ambient (full-dimensional), the induced measure (of the affine hull) or, in the case of lattice polytopes, for the induced rational measure. This is controlled by the parameter
measure
. Different engines may have different ideas on the definition of volume of a lower-dimensional object:sage: P = Polyhedron([[0, 0], [1, 1]]) sage: P.volume() 0 sage: P.volume(measure='induced') 1.414213562373095? sage: P.volume(measure='induced_rational') # optional -- latte_int 1 sage: S = polytopes.regular_polygon(6); S # optional - sage.rings.number_field A 2-dimensional polyhedron in AA^2 defined as the convex hull of 6 vertices sage: edge = S.faces(1)[4].as_polyhedron() # optional - sage.rings.number_field sage: edge.vertices() # optional - sage.rings.number_field (A vertex at (0.866025403784439?, 1/2), A vertex at (0, 1)) sage: edge.volume() # optional - sage.rings.number_field 0 sage: edge.volume(measure='induced') # optional - sage.rings.number_field 1 sage: P = Polyhedron(backend='normaliz',vertices=[[1,0,0],[0,0,1],[-1,1,1],[-1,2,0]]) # optional - pynormaliz sage: P.volume() # optional - pynormaliz 0 sage: P.volume(measure='induced') # optional - pynormaliz # optional - sage.rings.number_field 2.598076211353316? sage: P.volume(measure='induced',engine='normaliz') # optional - pynormaliz 2.598076211353316 sage: P.volume(measure='induced_rational') # optional - pynormaliz, latte_int 3/2 sage: P.volume(measure='induced_rational',engine='normaliz') # optional - pynormaliz 3/2 sage: P.volume(measure='induced_lattice') # optional - pynormaliz 3
The same polytope without normaliz backend:
sage: P = Polyhedron(vertices=[[1,0,0],[0,0,1],[-1,1,1],[-1,2,0]]) sage: P.volume(measure='induced_lattice',engine='latte') # optional - latte_int 3 sage: Dexact = polytopes.dodecahedron() # optional - sage.rings.number_field sage: v = Dexact.faces(2)[0].as_polyhedron().volume(measure='induced', engine='internal'); v # optional - sage.rings.number_field 1.53406271079097? sage: v = Dexact.faces(2)[4].as_polyhedron().volume(measure='induced', engine='internal'); v # optional - sage.rings.number_field 1.53406271079097? sage: RDF(v) # abs tol 1e-9 # optional - sage.rings.number_field 1.53406271079044 sage: Dinexact = polytopes.dodecahedron(exact=False) sage: w = Dinexact.faces(2)[2].as_polyhedron().volume(measure='induced', engine='internal'); RDF(w) # abs tol 1e-9 1.5340627082974878 sage: [polytopes.simplex(d).volume(measure='induced') for d in range(1,5)] == [sqrt(d+1)/factorial(d) for d in range(1,5)] True sage: I = Polyhedron([[-3, 0], [0, 9]]) sage: I.volume(measure='induced') # optional - sage.rings.number_field 9.48683298050514? sage: I.volume(measure='induced_rational') # optional -- latte_int 3 sage: T = Polyhedron([[3, 0, 0], [0, 4, 0], [0, 0, 5]]) sage: T.volume(measure='induced') # optional - sage.rings.number_field 13.86542462386205? sage: T.volume(measure='induced_rational') # optional -- latte_int 1/2 sage: Q = Polyhedron(vertices=[(0, 0, 1, 1), (0, 1, 1, 0), (1, 1, 0, 0)]) sage: Q.volume(measure='induced') 1 sage: Q.volume(measure='induced_rational') # optional -- latte_int 1/2
The volume of a full-dimensional unbounded polyhedron is infinity:
sage: P = Polyhedron(vertices = [[1, 0], [0, 1]], rays = [[1, 1]]) sage: P.volume() +Infinity
The volume of a non full-dimensional unbounded polyhedron depends on the measure used:
sage: P = Polyhedron(ieqs = [[1,1,1],[-1,-1,-1],[3,1,0]]); P A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 ray sage: P.volume() 0 sage: P.volume(measure='induced') +Infinity sage: P.volume(measure='ambient') 0 sage: P.volume(measure='induced_rational') # optional - pynormaliz +Infinity sage: P.volume(measure='induced_rational',engine='latte') # optional - latte_int +Infinity
The volume in \(0\)-dimensional space is taken by counting measure:
sage: P = Polyhedron(vertices=[[]]); P A 0-dimensional polyhedron in ZZ^0 defined as the convex hull of 1 vertex sage: P.volume() 1 sage: P = Polyhedron(vertices=[]); P The empty polyhedron in ZZ^0 sage: P.volume() 0