Splitting fields of polynomials over number fields#
AUTHORS:
Jeroen Demeyer (2014-01-02): initial version for trac ticket #2217
Jeroen Demeyer (2014-01-03): add
abort_degree
argument, trac ticket #15626
- class sage.rings.number_field.splitting_field.SplittingData(_pol, _dm)#
Bases:
object
A class to store data for internal use in
splitting_field()
. It contains two attributespol
(polynomial),dm
(degree multiple), wherepol
is a PARI polynomial anddm
a SageInteger
.dm
is a multiple of the degree of the splitting field ofpol
over some field \(E\). Insplitting_field()
, \(E\) is the field containing the current field \(K\) and all roots of other polynomials inside the list \(L\) withdm
less than thisdm
.- key()#
Return a sorting key. Compare first by degree bound, then by polynomial degree, then by discriminant.
EXAMPLES:
sage: from sage.rings.number_field.splitting_field import SplittingData sage: L = [] sage: L.append(SplittingData(pari("x^2 + 1"), 1)) sage: L.append(SplittingData(pari("x^3 + 1"), 1)) sage: L.append(SplittingData(pari("x^2 + 7"), 2)) sage: L.append(SplittingData(pari("x^3 + 1"), 2)) sage: L.append(SplittingData(pari("x^3 + x^2 + x + 1"), 2)) sage: L.sort(key=lambda x: x.key()); L [SplittingData(x^2 + 1, 1), SplittingData(x^3 + 1, 1), SplittingData(x^2 + 7, 2), SplittingData(x^3 + x^2 + x + 1, 2), SplittingData(x^3 + 1, 2)] sage: [x.key() for x in L] [(1, 2, 16), (1, 3, 729), (2, 2, 784), (2, 3, 256), (2, 3, 729)]
- poldegree()#
Return the degree of
self.pol
EXAMPLES:
sage: from sage.rings.number_field.splitting_field import SplittingData sage: SplittingData(pari("x^123 + x + 1"), 2).poldegree() 123
- exception sage.rings.number_field.splitting_field.SplittingFieldAbort(div, mult)#
Bases:
Exception
Special exception class to indicate an early abort of
splitting_field()
.EXAMPLES:
sage: from sage.rings.number_field.splitting_field import SplittingFieldAbort sage: raise SplittingFieldAbort(20, 60) Traceback (most recent call last): ... SplittingFieldAbort: degree of splitting field is a multiple of 20 sage: raise SplittingFieldAbort(12, 12) Traceback (most recent call last): ... SplittingFieldAbort: degree of splitting field equals 12
- sage.rings.number_field.splitting_field.splitting_field(poly, name, map=False, degree_multiple=None, abort_degree=None, simplify=True, simplify_all=False)#
Compute the splitting field of a given polynomial, defined over a number field.
INPUT:
poly
– a monic polynomial over a number fieldname
– a variable name for the number fieldmap
– (default:False
) also return an embedding ofpoly
into the resulting field. Note that computing this embedding might be expensive.degree_multiple
– a multiple of the absolute degree of the splitting field. Ifdegree_multiple
equals the actual degree, this can enormously speed up the computation.abort_degree
– abort by raising aSplittingFieldAbort
if it can be determined that the absolute degree of the splitting field is strictly larger thanabort_degree
.simplify
– (default:True
) during the algorithm, try to find a simpler defining polynomial for the intermediate number fields using PARI’spolred()
. This usually speeds up the computation but can also considerably slow it down. Try and see what works best in the given situation.simplify_all
– (default:False
) IfTrue
, simplify intermediate fields and also the resulting number field.
OUTPUT:
If
map
isFalse
, the splitting field as an absolute number field. Ifmap
isTrue
, a tuple(K, phi)
wherephi
is an embedding of the base field inK
.EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: K.<a> = (x^3 + 2).splitting_field(); K Number Field in a with defining polynomial x^6 + 3*x^5 + 6*x^4 + 11*x^3 + 12*x^2 - 3*x + 1 sage: K.<a> = (x^3 - 3*x + 1).splitting_field(); K Number Field in a with defining polynomial x^3 - 3*x + 1
The
simplify
andsimplify_all
flags usually yield fields defined by polynomials with smaller coefficients. By default,simplify
is True andsimplify_all
is False.sage: (x^4 - x + 1).splitting_field('a', simplify=False) Number Field in a with defining polynomial x^24 - 2780*x^22 + 2*x^21 + 3527512*x^20 - 2876*x^19 - 2701391985*x^18 + 945948*x^17 + 1390511639677*x^16 + 736757420*x^15 - 506816498313560*x^14 - 822702898220*x^13 + 134120588299548463*x^12 + 362240696528256*x^11 - 25964582366880639486*x^10 - 91743672243419990*x^9 + 3649429473447308439427*x^8 + 14310332927134072336*x^7 - 363192569823568746892571*x^6 - 1353403793640477725898*x^5 + 24293393281774560140427565*x^4 + 70673814899934142357628*x^3 - 980621447508959243128437933*x^2 - 1539841440617805445432660*x + 18065914012013502602456565991 sage: (x^4 - x + 1).splitting_field('a', simplify=True) Number Field in a with defining polynomial x^24 + 8*x^23 - 32*x^22 - 310*x^21 + 540*x^20 + 4688*x^19 - 6813*x^18 - 32380*x^17 + 49525*x^16 + 102460*x^15 - 129944*x^14 - 287884*x^13 + 372727*x^12 + 150624*x^11 - 110530*x^10 - 566926*x^9 + 1062759*x^8 - 779940*x^7 + 863493*x^6 - 1623578*x^5 + 1759513*x^4 - 955624*x^3 + 459975*x^2 - 141948*x + 53919 sage: (x^4 - x + 1).splitting_field('a', simplify_all=True) Number Field in a with defining polynomial x^24 - 3*x^23 + 2*x^22 - x^20 + 4*x^19 + 32*x^18 - 35*x^17 - 92*x^16 + 49*x^15 + 163*x^14 - 15*x^13 - 194*x^12 - 15*x^11 + 163*x^10 + 49*x^9 - 92*x^8 - 35*x^7 + 32*x^6 + 4*x^5 - x^4 + 2*x^2 - 3*x + 1
Reducible polynomials also work:
sage: pol = (x^4 - 1)*(x^2 + 1/2)*(x^2 + 1/3) sage: pol.splitting_field('a', simplify_all=True) Number Field in a with defining polynomial x^8 - x^4 + 1
Relative situation:
sage: R.<x> = PolynomialRing(QQ) sage: K.<a> = NumberField(x^3 + 2) sage: S.<t> = PolynomialRing(K) sage: L.<b> = (t^2 - a).splitting_field() sage: L Number Field in b with defining polynomial t^6 + 2
With
map=True
, we also get the embedding of the base field into the splitting field:sage: L.<b>, phi = (t^2 - a).splitting_field(map=True) sage: phi Ring morphism: From: Number Field in a with defining polynomial x^3 + 2 To: Number Field in b with defining polynomial t^6 + 2 Defn: a |--> b^2 sage: (x^4 - x + 1).splitting_field('a', simplify_all=True, map=True)[1] Ring morphism: From: Rational Field To: Number Field in a with defining polynomial x^24 - 3*x^23 + 2*x^22 - x^20 + 4*x^19 + 32*x^18 - 35*x^17 - 92*x^16 + 49*x^15 + 163*x^14 - 15*x^13 - 194*x^12 - 15*x^11 + 163*x^10 + 49*x^9 - 92*x^8 - 35*x^7 + 32*x^6 + 4*x^5 - x^4 + 2*x^2 - 3*x + 1 Defn: 1 |--> 1
We can enable verbose messages:
sage: from sage.misc.verbose import set_verbose sage: set_verbose(2) sage: K.<a> = (x^3 - x + 1).splitting_field() verbose 1 (...: splitting_field.py, splitting_field) Starting field: y verbose 1 (...: splitting_field.py, splitting_field) SplittingData to factor: [(3, 0)] verbose 2 (...: splitting_field.py, splitting_field) Done factoring (time = ...) verbose 1 (...: splitting_field.py, splitting_field) SplittingData to handle: [(2, 2), (3, 3)] verbose 1 (...: splitting_field.py, splitting_field) Bounds for absolute degree: [6, 6] verbose 2 (...: splitting_field.py, splitting_field) Handling polynomial x^2 + 23 verbose 1 (...: splitting_field.py, splitting_field) New field before simplifying: x^2 + 23 (time = ...) verbose 1 (...: splitting_field.py, splitting_field) New field: y^2 - y + 6 (time = ...) verbose 2 (...: splitting_field.py, splitting_field) Converted polynomials to new field (time = ...) verbose 1 (...: splitting_field.py, splitting_field) SplittingData to factor: [] verbose 2 (...: splitting_field.py, splitting_field) Done factoring (time = ...) verbose 1 (...: splitting_field.py, splitting_field) SplittingData to handle: [(3, 3)] verbose 1 (...: splitting_field.py, splitting_field) Bounds for absolute degree: [6, 6] verbose 2 (...: splitting_field.py, splitting_field) Handling polynomial x^3 - x + 1 verbose 1 (...: splitting_field.py, splitting_field) New field: y^6 + 3*y^5 + 19*y^4 + 35*y^3 + 127*y^2 + 73*y + 271 (time = ...) sage: set_verbose(0)
Try all Galois groups in degree 4. We use a quadratic base field such that
polgalois()
cannot be used:sage: R.<x> = PolynomialRing(QuadraticField(-11)) sage: C2C2pol = x^4 - 10*x^2 + 1 sage: C2C2pol.splitting_field('x') Number Field in x with defining polynomial x^8 + 24*x^6 + 608*x^4 + 9792*x^2 + 53824 sage: C4pol = x^4 + x^3 + x^2 + x + 1 sage: C4pol.splitting_field('x') Number Field in x with defining polynomial x^8 - x^7 - 2*x^6 + 5*x^5 + x^4 + 15*x^3 - 18*x^2 - 27*x + 81 sage: D8pol = x^4 - 2 sage: D8pol.splitting_field('x') Number Field in x with defining polynomial x^16 + 8*x^15 + 68*x^14 + 336*x^13 + 1514*x^12 + 5080*x^11 + 14912*x^10 + 35048*x^9 + 64959*x^8 + 93416*x^7 + 88216*x^6 + 41608*x^5 - 25586*x^4 - 60048*x^3 - 16628*x^2 + 12008*x + 34961 sage: A4pol = x^4 - 4*x^3 + 14*x^2 - 28*x + 21 sage: A4pol.splitting_field('x') Number Field in x with defining polynomial x^24 - 20*x^23 + 290*x^22 - 3048*x^21 + 26147*x^20 - 186132*x^19 + 1130626*x^18 - 5913784*x^17 + 26899345*x^16 - 106792132*x^15 + 371066538*x^14 - 1127792656*x^13 + 2991524876*x^12 - 6888328132*x^11 + 13655960064*x^10 - 23000783036*x^9 + 32244796382*x^8 - 36347834476*x^7 + 30850889884*x^6 - 16707053128*x^5 + 1896946429*x^4 + 4832907884*x^3 - 3038258802*x^2 - 200383596*x + 593179173 sage: S4pol = x^4 + x + 1 sage: S4pol.splitting_field('x') Number Field in x with defining polynomial x^48 ...
Some bigger examples:
sage: R.<x> = PolynomialRing(QQ) sage: pol15 = chebyshev_T(31, x) - 1 # 2^30*(x-1)*minpoly(cos(2*pi/31))^2 sage: pol15.splitting_field('a') Number Field in a with defining polynomial x^15 - x^14 - 14*x^13 + 13*x^12 + 78*x^11 - 66*x^10 - 220*x^9 + 165*x^8 + 330*x^7 - 210*x^6 - 252*x^5 + 126*x^4 + 84*x^3 - 28*x^2 - 8*x + 1 sage: pol48 = x^6 - 4*x^4 + 12*x^2 - 12 sage: pol48.splitting_field('a') Number Field in a with defining polynomial x^48 ...
If you somehow know the degree of the field in advance, you should add a
degree_multiple
argument. This can speed up the computation, in particular for polynomials of degree >= 12 or for relative extensions:sage: pol15.splitting_field('a', degree_multiple=15) Number Field in a with defining polynomial x^15 + x^14 - 14*x^13 - 13*x^12 + 78*x^11 + 66*x^10 - 220*x^9 - 165*x^8 + 330*x^7 + 210*x^6 - 252*x^5 - 126*x^4 + 84*x^3 + 28*x^2 - 8*x - 1
A value for
degree_multiple
which isn’t actually a multiple of the absolute degree of the splitting field can either result in a wrong answer or the following exception:sage: pol48.splitting_field('a', degree_multiple=20) Traceback (most recent call last): ... ValueError: inconsistent degree_multiple in splitting_field()
Compute the Galois closure as the splitting field of the defining polynomial:
sage: R.<x> = PolynomialRing(QQ) sage: pol48 = x^6 - 4*x^4 + 12*x^2 - 12 sage: K.<a> = NumberField(pol48) sage: L.<b> = pol48.change_ring(K).splitting_field() sage: L Number Field in b with defining polynomial x^48 ...
Try all Galois groups over \(\QQ\) in degree 5 except for \(S_5\) (the latter is infeasible with the current implementation):
sage: C5pol = x^5 + x^4 - 4*x^3 - 3*x^2 + 3*x + 1 sage: C5pol.splitting_field('x') Number Field in x with defining polynomial x^5 + x^4 - 4*x^3 - 3*x^2 + 3*x + 1 sage: D10pol = x^5 - x^4 - 5*x^3 + 4*x^2 + 3*x - 1 sage: D10pol.splitting_field('x') Number Field in x with defining polynomial x^10 - 28*x^8 + 216*x^6 - 681*x^4 + 902*x^2 - 401 sage: AGL_1_5pol = x^5 - 2 sage: AGL_1_5pol.splitting_field('x') Number Field in x with defining polynomial x^20 + 10*x^19 + 55*x^18 + 210*x^17 + 595*x^16 + 1300*x^15 + 2250*x^14 + 3130*x^13 + 3585*x^12 + 3500*x^11 + 2965*x^10 + 2250*x^9 + 1625*x^8 + 1150*x^7 + 750*x^6 + 400*x^5 + 275*x^4 + 100*x^3 + 75*x^2 + 25 sage: A5pol = x^5 - x^4 + 2*x^2 - 2*x + 2 sage: A5pol.splitting_field('x') Number Field in x with defining polynomial x^60 ...
We can use the
abort_degree
option if we don’t want to compute fields of too large degree (this can be used to check whether the splitting field has small degree):sage: (x^5+x+3).splitting_field('b', abort_degree=119) Traceback (most recent call last): ... SplittingFieldAbort: degree of splitting field equals 120 sage: (x^10+x+3).splitting_field('b', abort_degree=60) # long time (10s on sage.math, 2014) Traceback (most recent call last): ... SplittingFieldAbort: degree of splitting field is a multiple of 180
Use the
degree_divisor
attribute to recover the divisor of the degree of the splitting field ordegree_multiple
to recover a multiple:sage: from sage.rings.number_field.splitting_field import SplittingFieldAbort sage: try: # long time (4s on sage.math, 2014) ....: (x^8+x+1).splitting_field('b', abort_degree=60, simplify=False) ....: except SplittingFieldAbort as e: ....: print(e.degree_divisor) ....: print(e.degree_multiple) 120 1440