Abstract base classes for classes in geometry
#
- class sage.geometry.abc.ConvexRationalPolyhedralCone#
Bases:
object
Abstract base class for
ConvexRationalPolyhedralCone
This class is defined for the purpose of
isinstance
tests. It should not be instantiated.EXAMPLES:
sage: import sage.geometry.abc sage: C = cones.nonnegative_orthant(2) # optional - sage.geometry.polyhedron sage: isinstance(C, sage.geometry.abc.ConvexRationalPolyhedralCone) # optional - sage.geometry.polyhedron True
By design, there is a unique direct subclass:
sage: sage.geometry.abc.ConvexRationalPolyhedralCone.__subclasses__() # optional - sage.geometry.polyhedron [<class 'sage.geometry.cone.ConvexRationalPolyhedralCone'>] sage: len(sage.geometry.abc.Polyhedron.__subclasses__()) <= 1 True
- class sage.geometry.abc.LatticePolytope#
Bases:
object
Abstract base class for
LatticePolytopeClass
This class is defined for the purpose of
isinstance
tests. It should not be instantiated.EXAMPLES:
sage: import sage.geometry.abc sage: P = LatticePolytope([(1,2,3), (4,5,6)]) # optional - sage.geometry.polyhedron sage: isinstance(P, sage.geometry.abc.LatticePolytope) # optional - sage.geometry.polyhedron True
By design, there is a unique direct subclass:
sage: sage.geometry.abc.LatticePolytope.__subclasses__() # optional - sage.geometry.polyhedron [<class 'sage.geometry.lattice_polytope.LatticePolytopeClass'>] sage: len(sage.geometry.abc.Polyhedron.__subclasses__()) <= 1 True
- class sage.geometry.abc.Polyhedron#
Bases:
object
Abstract base class for
Polyhedron_base
This class is defined for the purpose of
isinstance
tests. It should not be instantiated.EXAMPLES:
sage: import sage.geometry.abc sage: P = polytopes.cube() # optional - sage.geometry.polyhedron sage: isinstance(P, sage.geometry.abc.Polyhedron) # optional - sage.geometry.polyhedron True
By design, there is a unique direct subclass:
sage: sage.geometry.abc.Polyhedron.__subclasses__() # optional - sage.geometry.polyhedron [<class 'sage.geometry.polyhedron.base0.Polyhedron_base0'>] sage: len(sage.geometry.abc.Polyhedron.__subclasses__()) <= 1 True