Triangulations of a point configuration#
A point configuration is a finite set of points in Euclidean space or, more generally, in projective space. A triangulation is a simplicial decomposition of the convex hull of a given point configuration such that all vertices of the simplices end up lying on points of the configuration. That is, there are no new vertices apart from the initial points.
Note that points that are not vertices of the convex hull need not be
used in the triangulation. A triangulation that does make use of all
points of the configuration is called fine, and you can restrict
yourself to such triangulations if you want. See
PointConfiguration
and
restrict_to_fine_triangulations()
for
more details.
Finding a single triangulation and listing all connected triangulations is implemented natively in this package. However, for more advanced options [TOPCOM] needs to be installed. It is available as an optional package for Sage, and you can install it with the shell command
sage -i topcom
Note
TOPCOM and the internal algorithms tend to enumerate
triangulations in a different order. This is why we always
explicitly specify the engine as engine='topcom'
or
engine='internal'
in the doctests. In your own applications,
you do not need to specify the engine. By default, TOPCOM is used
if it is available and the internal algorithms are used otherwise.
EXAMPLES:
First, we select the internal implementation for enumerating triangulations:
sage: PointConfiguration.set_engine('internal') # to make doctests independent of TOPCOM
A 2-dimensional point configuration:
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])
sage: p
A point configuration in affine 2-space over Integer Ring consisting
of 5 points. The triangulations of this point configuration are
assumed to be connected, not necessarily fine, not necessarily regular.
A triangulation of it:
sage: t = p.triangulate() # a single triangulation
sage: t
(<1,3,4>, <2,3,4>)
sage: len(t)
2
sage: t[0]
(1, 3, 4)
sage: t[1]
(2, 3, 4)
sage: list(t)
[(1, 3, 4), (2, 3, 4)]
sage: t.plot(axes=False) # optional - sage.plot
Graphics object consisting of 12 graphics primitives
List triangulations of it:
sage: list( p.triangulations() )
[(<1,3,4>, <2,3,4>),
(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>),
(<1,2,3>, <1,2,4>),
(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)]
sage: p_fine = p.restrict_to_fine_triangulations()
sage: p_fine
A point configuration in affine 2-space over Integer Ring consisting
of 5 points. The triangulations of this point configuration are
assumed to be connected, fine, not necessarily regular.
sage: list( p_fine.triangulations() )
[(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>),
(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)]
A 3-dimensional point configuration:
sage: p = [[0,-1,-1],[0,0,1],[0,1,0], [1,-1,-1],[1,0,1],[1,1,0]]
sage: points = PointConfiguration(p)
sage: triang = points.triangulate()
sage: triang.plot(axes=False) # optional - sage.plot
Graphics3d Object
The standard example of a non-regular triangulation (requires TOPCOM):
sage: PointConfiguration.set_engine('topcom') # optional - topcom
sage: p = PointConfiguration([[-1,-5/9],[0,10/9],[1,-5/9],[-2,-10/9],[0,20/9],[2,-10/9]])
sage: regular = p.restrict_to_regular_triangulations(True).triangulations_list() # optional - topcom
sage: nonregular = p.restrict_to_regular_triangulations(False).triangulations_list() # optional - topcom
sage: len(regular) # optional - topcom
16
sage: len(nonregular) # optional - topcom
2
sage: nonregular[0].plot(aspect_ratio=1, axes=False) # optional - topcom # optional - sage.plot
Graphics object consisting of 25 graphics primitives
sage: PointConfiguration.set_engine('internal') # to make doctests independent of TOPCOM
Note that the points need not be in general position. That is, the points may lie in a hyperplane and the linear dependencies will be removed before passing the data to TOPCOM which cannot handle it:
sage: points = [[0,0,0,1],[0,3,0,1],[3,0,0,1],[0,0,1,1],[0,3,1,1],[3,0,1,1],[1,1,2,1]]
sage: points = [ p+[1,2,3] for p in points ]
sage: pc = PointConfiguration(points)
sage: pc.ambient_dim()
7
sage: pc.dim()
3
sage: pc.triangulate()
(<0,1,2,6>, <0,1,3,6>, <0,2,3,6>, <1,2,4,6>, <1,3,4,6>, <2,3,5,6>, <2,4,5,6>)
sage: _ in pc.triangulations()
True
sage: len( pc.triangulations_list() )
26
AUTHORS:
Volker Braun: initial version, 2010
Josh Whitney: added functionality for computing volumes and secondary polytopes of PointConfigurations
Marshall Hampton: improved documentation and doctest coverage
Volker Braun: rewrite using Parent/Element and categories. Added a Point class. More doctests. Less zombies.
Volker Braun: Cythonized parts of it, added a C++ implementation of the bistellar flip algorithm to enumerate all connected triangulations.
Volker Braun 2011: switched the triangulate() method to the placing triangulation (faster).
- class sage.geometry.triangulation.point_configuration.PointConfiguration(points, connected, fine, regular, star, defined_affine)#
Bases:
UniqueRepresentation
,PointConfiguration_base
A collection of points in Euclidean (or projective) space.
This is the parent class for the triangulations of the point configuration. There are a few options to specifically select what kind of triangulations are admissible.
INPUT:
The constructor accepts the following arguments:
points
– the points. Technically, any iterable of iterables will do. In particular, aPointConfiguration
can be passed.projective
– boolean (default:False
). Whether the point coordinates should be interpreted as projective (True
) or affine (False
) coordinates. If necessary, points are projectivized by setting the last homogeneous coordinate to one and/or affine patches are chosen internally.connected
– boolean (default:True
). Whether the triangulations should be connected to the regular triangulations via bistellar flips. These are much easier to compute than all triangulations.fine
– boolean (default:False
). Whether the triangulations must be fine, that is, make use of all points of the configuration.regular
– boolean orNone
(default:None
). Whether the triangulations must be regular. A regular triangulation is one that is induced by a piecewise-linear convex support function. In other words, the shadows of the faces of a polyhedron in one higher dimension.True
: Only regular triangulations.False
: Only non-regular triangulations.None
(default): Both kinds of triangulation.
star
– eitherNone
or a point. Whether the triangulations must be star. A triangulation is star if all maximal simplices contain a common point. The central point can be specified by its index (an integer) in the given points or by its coordinates (anything iterable.)
EXAMPLES:
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]]) sage: p A point configuration in affine 2-space over Integer Ring consisting of 5 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular. sage: p.triangulate() # a single triangulation (<1,3,4>, <2,3,4>)
- Element#
alias of
Triangulation
- Gale_transform(points=None)#
Return the Gale transform of
self
.INPUT:
points
– a tuple of points or point indices orNone
(default). A subset of points for which to compute the Gale transform. By default, all points are used.
OUTPUT:
A matrix over
base_ring()
.EXAMPLES:
sage: pc = PointConfiguration([(0,0),(1,0),(2,1),(1,1),(0,1)]) sage: pc.Gale_transform() [ 1 -1 0 1 -1] [ 0 0 1 -2 1] sage: pc.Gale_transform((0,1,3,4)) [ 1 -1 1 -1] sage: points = (pc.point(0), pc.point(1), pc.point(3), pc.point(4)) sage: pc.Gale_transform(points) [ 1 -1 1 -1]
- an_element()#
Synonymous for
triangulate()
.
- bistellar_flips()#
Return the bistellar flips.
OUTPUT:
The bistellar flips as a tuple. Each flip is a pair \((T_+,T_-)\) where \(T_+\) and \(T_-\) are partial triangulations of the point configuration.
EXAMPLES:
sage: pc = PointConfiguration([(0,0),(1,0),(0,1),(1,1)]) sage: pc.bistellar_flips() (((<0,1,3>, <0,2,3>), (<0,1,2>, <1,2,3>)),) sage: Tpos, Tneg = pc.bistellar_flips()[0] sage: Tpos.plot(axes=False) # optional - sage.plot Graphics object consisting of 11 graphics primitives sage: Tneg.plot(axes=False) # optional - sage.plot Graphics object consisting of 11 graphics primitives
The 3d analog:
sage: pc = PointConfiguration([(0,0,0),(0,2,0),(0,0,2),(-1,0,0),(1,1,1)]) sage: pc.bistellar_flips() (((<0,1,2,3>, <0,1,2,4>), (<0,1,3,4>, <0,2,3,4>, <1,2,3,4>)),)
A 2d flip on the base of the pyramid over a square:
sage: pc = PointConfiguration([(0,0,0),(0,2,0),(0,0,2),(0,2,2),(1,1,1)]) sage: pc.bistellar_flips() (((<0,1,3>, <0,2,3>), (<0,1,2>, <1,2,3>)),) sage: Tpos, Tneg = pc.bistellar_flips()[0] sage: Tpos.plot(axes=False) # optional - sage.plot Graphics3d Object
- circuits()#
Return the circuits of the point configuration.
Roughly, a circuit is a minimal linearly dependent subset of the points. That is, a circuit is a partition
\[\{ 0, 1, \dots, n-1 \} = C_+ \cup C_0 \cup C_-\]such that there is an (unique up to an overall normalization) affine relation
\[\sum_{i\in C_+} \alpha_i \vec{p}_i = \sum_{j\in C_-} \alpha_j \vec{p}_j\]with all positive (or all negative) coefficients, where \(\vec{p}_i=(p_1,\dots,p_k,1)\) are the projective coordinates of the \(i\)-th point.
OUTPUT:
The list of (unsigned) circuits as triples \((C_+, C_0, C_-)\). The swapped circuit \((C_-, C_0, C_+)\) is not returned separately.
EXAMPLES:
sage: p = PointConfiguration([(0,0),(+1,0),(-1,0),(0,+1),(0,-1)]) sage: sorted(p.circuits()) [((0,), (1, 2), (3, 4)), ((0,), (3, 4), (1, 2)), ((1, 2), (0,), (3, 4))]
- circuits_support()#
A generator for the supports of the circuits of the point configuration.
See
circuits()
for details.OUTPUT:
A generator for the supports \(C_-\cup C_+\) (returned as a Python tuple) for all circuits of the point configuration.
EXAMPLES:
sage: p = PointConfiguration([(0,0), (+1,0), (-1,0), (0,+1), (0,-1)]) sage: sorted(p.circuits_support()) [(0, 1, 2), (0, 3, 4), (1, 2, 3, 4)]
- contained_simplex(large=True, initial_point=None, point_order=None)#
Return a simplex contained in the point configuration.
INPUT:
large
– boolean. Whether to attempt to return a large simplex.initial_point
– aPoint
orNone
(default). A specific point to start with when picking the simplex vertices.point_order
– a list or tuple of (some or all)Point
s orNone
(default).
OUTPUT:
A tuple of points that span a simplex of dimension
dim()
. Iflarge==True
, the simplex is constructed by successively picking the farthest point. This will ensure that the simplex is not unnecessarily small, but will in general not return a maximal simplex. If apoint_order
is specified, the simplex is greedily constructed by considering the points in this order. Thelarge
option andinitial_point
is ignored in this case. Thepoint_order
may contain only a subset of the points; in this case, the dimension of the simplex will be the dimension of this subset.EXAMPLES:
sage: pc = PointConfiguration([(0,0),(1,0),(2,1),(1,1),(0,1)]) sage: pc.contained_simplex() (P(0, 1), P(2, 1), P(1, 0)) sage: pc.contained_simplex(large=False) (P(0, 1), P(1, 1), P(1, 0)) sage: pc.contained_simplex(initial_point=pc.point(2)) (P(2, 1), P(0, 0), P(1, 0)) sage: pc = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]]) sage: pc.contained_simplex() (P(-1, -1), P(1, 1), P(0, 1)) sage: pc.contained_simplex(point_order = [pc[1],pc[3],pc[4],pc[2],pc[0]]) (P(0, 1), P(1, 1), P(-1, -1))
Lower-dimensional example:
sage: pc.contained_simplex(point_order = [pc[0],pc[3],pc[4]]) (P(0, 0), P(1, 1))
- convex_hull()#
Return the convex hull of the point configuration.
EXAMPLES:
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]]) sage: p.convex_hull() A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices
- distance(x, y)#
Returns the distance between two points.
INPUT:
x
,y
– two points of the point configuration.
OUTPUT:
The distance between
x
andy
, measured either withdistance_affine()
ordistance_FS()
depending on whether the point configuration is defined by affine or projective points. These are related, but not equal to the usual flat and Fubini-Study distance.EXAMPLES:
sage: pc = PointConfiguration([(0,0),(1,0),(2,1),(1,2),(0,1)]) sage: [ pc.distance(pc.point(0), p) for p in pc.points() ] [0, 1, 5, 5, 1] sage: pc = PointConfiguration([(0,0,1),(1,0,1),(2,1,1),(1,2,1),(0,1,1)], projective=True) sage: [ pc.distance(pc.point(0), p) for p in pc.points() ] [0, 1/2, 5/6, 5/6, 1/2]
- distance_FS(x, y)#
Returns the distance between two points.
The distance function used in this method is \(1-\cos d_{FS}(x,y)^2\), where \(d_{FS}\) is the Fubini-Study distance of projective points. Recall the Fubini-Studi distance function
\[d_{FS}(x,y) = \arccos \sqrt{ \frac{(x\cdot y)^2}{|x|^2 |y|^2} }\]INPUT:
x
,y
– two points of the point configuration.
OUTPUT:
The distance \(1-\cos d_{FS}(x,y)^2\). Note that this distance lies in the same field as the entries of
x
,y
. That is, the distance of rational points will be rational and so on.EXAMPLES:
sage: pc = PointConfiguration([(0,0),(1,0),(2,1),(1,2),(0,1)]) sage: [ pc.distance_FS(pc.point(0), p) for p in pc.points() ] [0, 1/2, 5/6, 5/6, 1/2]
- distance_affine(x, y)#
Returns the distance between two points.
The distance function used in this method is \(d_{aff}(x,y)^2\), the square of the usual affine distance function
\[d_{aff}(x,y) = |x-y|\]INPUT:
x
,y
– two points of the point configuration.
OUTPUT:
The metric distance-square \(d_{aff}(x,y)^2\). Note that this distance lies in the same field as the entries of
x
,y
. That is, the distance of rational points will be rational and so on.EXAMPLES:
sage: pc = PointConfiguration([(0,0),(1,0),(2,1),(1,2),(0,1)]) sage: [ pc.distance_affine(pc.point(0), p) for p in pc.points() ] [0, 1, 5, 5, 1]
- exclude_points(point_idx_list)#
Return a new point configuration with the given points removed.
INPUT:
point_idx_list
– a list of integers. The indices of points to exclude.
OUTPUT:
A new
PointConfiguration
with the given points removed.EXAMPLES:
sage: p = PointConfiguration([[-1,0], [0,0], [1,-1], [1,0], [1,1]]) sage: list(p) [P(-1, 0), P(0, 0), P(1, -1), P(1, 0), P(1, 1)] sage: q = p.exclude_points([3]) sage: list(q) [P(-1, 0), P(0, 0), P(1, -1), P(1, 1)] sage: p.exclude_points( p.face_interior(codim=1) ).points() (P(-1, 0), P(0, 0), P(1, -1), P(1, 1))
- face_codimension(point)#
Return the smallest \(d\in\ZZ\) such that
point
is contained in the interior of a codimension-\(d\) face.EXAMPLES:
sage: triangle = PointConfiguration([[0,0], [1,-1], [1,0], [1,1]]) sage: triangle.point(2) P(1, 0) sage: triangle.face_codimension(2) 1 sage: triangle.face_codimension( [1,0] ) 1
This also works for degenerate cases like the tip of the pyramid over a square (which saturates four inequalities):
sage: pyramid = PointConfiguration([[1,0,0],[0,1,1],[0,1,-1],[0,-1,-1],[0,-1,1]]) sage: pyramid.face_codimension(0) 3
- face_interior(dim=None, codim=None)#
Return points by the codimension of the containing face in the convex hull.
EXAMPLES:
sage: triangle = PointConfiguration([[-1,0], [0,0], [1,-1], [1,0], [1,1]]) sage: triangle.face_interior() ((1,), (3,), (0, 2, 4)) sage: triangle.face_interior(dim=0) # the vertices of the convex hull (0, 2, 4) sage: triangle.face_interior(codim=1) # interior of facets (3,)
- farthest_point(points, among=None)#
Return the point with the most distance from
points
.INPUT:
points
– a list of points.among
– a list of points orNone
(default). The set of points from which to pick the farthest one. By default, all points of the configuration are considered.
OUTPUT:
A
Point
with largest minimal distance from all givenpoints
.EXAMPLES:
sage: pc = PointConfiguration([(0,0),(1,0),(1,1),(0,1)]) sage: pc.farthest_point([ pc.point(0) ]) P(1, 1)
- lexicographic_triangulation()#
Return the lexicographic triangulation.
The algorithm was taken from [PUNTOS].
EXAMPLES:
sage: p = PointConfiguration([(0,0),(+1,0),(-1,0),(0,+1),(0,-1)]) sage: p.lexicographic_triangulation() (<1,3,4>, <2,3,4>)
- placing_triangulation(point_order=None)#
Construct the placing (pushing) triangulation.
INPUT:
point_order
– list of points or integers. The order in which the points are to be placed. If not given, the points will be placed in some arbitrary order that attempts to produce a small number of simplices.
OUTPUT:
A
Triangulation
.EXAMPLES:
sage: pc = PointConfiguration([(0,0),(1,0),(2,1),(1,2),(0,1)]) sage: pc.placing_triangulation() (<0,1,2>, <0,2,4>, <2,3,4>) sage: pc.placing_triangulation(point_order=(3,2,1,4,0)) (<0,1,4>, <1,2,3>, <1,3,4>) sage: pc.placing_triangulation(point_order=[pc[1],pc[3],pc[4],pc[0]]) (<0,1,4>, <1,3,4>) sage: U=matrix([ ....: [ 0, 0, 0, 0, 0, 2, 4,-1, 1, 1, 0, 0, 1, 0], ....: [ 0, 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0], ....: [ 0, 2, 0, 0, 0, 0,-1, 0, 1, 0, 1, 0, 0, 1], ....: [ 0, 1, 1, 0, 0, 1, 0,-2, 1, 0, 0,-1, 1, 1], ....: [ 0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 0, 0] ....: ]) sage: p = PointConfiguration(U.columns()) sage: triangulation = p.placing_triangulation(); triangulation (<0,2,3,4,6,7>, <0,2,3,4,6,12>, <0,2,3,4,7,13>, <0,2,3,4,12,13>, <0,2,3,6,7,13>, <0,2,3,6,12,13>, <0,2,4,6,7,13>, <0,2,4,6,12,13>, <0,3,4,6,7,12>, <0,3,4,7,12,13>, <0,3,6,7,12,13>, <0,4,6,7,12,13>, <1,3,4,5,6,12>, <1,3,4,6,11,12>, <1,3,4,7,11,13>, <1,3,4,11,12,13>, <1,3,6,7,11,13>, <1,3,6,11,12,13>, <1,4,6,7,11,13>, <1,4,6,11,12,13>, <3,4,6,7,11,12>, <3,4,7,11,12,13>, <3,6,7,11,12,13>, <4,6,7,11,12,13>) sage: sum(p.volume(t) for t in triangulation) 42 sage: p0 = PointConfiguration([(0,0),(+1,0),(-1,0),(0,+1),(0,-1)]) sage: p0.pushing_triangulation(point_order=[1,2,0,3,4]) (<1,2,3>, <1,2,4>) sage: p0.pushing_triangulation(point_order=[0,1,2,3,4]) (<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>)
The same triangulation with renumbered points 0->4, 1->0, etc:
sage: p1 = PointConfiguration([(+1,0),(-1,0),(0,+1),(0,-1),(0,0)]) sage: p1.pushing_triangulation(point_order=[4,0,1,2,3]) (<0,2,4>, <0,3,4>, <1,2,4>, <1,3,4>)
- plot(**kwds)#
Produce a graphical representation of the point configuration.
EXAMPLES:
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]]) sage: p.plot(axes=False) # optional - sage.plot Graphics object consisting of 5 graphics primitives
- positive_circuits(*negative)#
Returns the positive part of circuits with fixed negative part.
A circuit is a pair \((C_+, C_-)\), each consisting of a subset (actually, an ordered tuple) of point indices.
INPUT:
*negative
– integer. The indices of points.
OUTPUT:
A tuple of all circuits with \(C_-\) =
negative
.EXAMPLES:
sage: p = PointConfiguration([(1,0,0),(0,1,0),(0,0,1),(-2,0,-1),(-2,-1,0),(-3,-1,-1),(1,1,1),(-1,0,0),(0,0,0)]) sage: sorted(p.positive_circuits(8)) [(0, 1, 2, 5), (0, 1, 4), (0, 2, 3), (0, 3, 4, 6), (0, 5, 6), (0, 7)] sage: p.positive_circuits(0,5,6) ((8,),)
- pushing_triangulation(point_order=None)#
Construct the placing (pushing) triangulation.
INPUT:
point_order
– list of points or integers. The order in which the points are to be placed. If not given, the points will be placed in some arbitrary order that attempts to produce a small number of simplices.
OUTPUT:
A
Triangulation
.EXAMPLES:
sage: pc = PointConfiguration([(0,0),(1,0),(2,1),(1,2),(0,1)]) sage: pc.placing_triangulation() (<0,1,2>, <0,2,4>, <2,3,4>) sage: pc.placing_triangulation(point_order=(3,2,1,4,0)) (<0,1,4>, <1,2,3>, <1,3,4>) sage: pc.placing_triangulation(point_order=[pc[1],pc[3],pc[4],pc[0]]) (<0,1,4>, <1,3,4>) sage: U=matrix([ ....: [ 0, 0, 0, 0, 0, 2, 4,-1, 1, 1, 0, 0, 1, 0], ....: [ 0, 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0], ....: [ 0, 2, 0, 0, 0, 0,-1, 0, 1, 0, 1, 0, 0, 1], ....: [ 0, 1, 1, 0, 0, 1, 0,-2, 1, 0, 0,-1, 1, 1], ....: [ 0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 0, 0] ....: ]) sage: p = PointConfiguration(U.columns()) sage: triangulation = p.placing_triangulation(); triangulation (<0,2,3,4,6,7>, <0,2,3,4,6,12>, <0,2,3,4,7,13>, <0,2,3,4,12,13>, <0,2,3,6,7,13>, <0,2,3,6,12,13>, <0,2,4,6,7,13>, <0,2,4,6,12,13>, <0,3,4,6,7,12>, <0,3,4,7,12,13>, <0,3,6,7,12,13>, <0,4,6,7,12,13>, <1,3,4,5,6,12>, <1,3,4,6,11,12>, <1,3,4,7,11,13>, <1,3,4,11,12,13>, <1,3,6,7,11,13>, <1,3,6,11,12,13>, <1,4,6,7,11,13>, <1,4,6,11,12,13>, <3,4,6,7,11,12>, <3,4,7,11,12,13>, <3,6,7,11,12,13>, <4,6,7,11,12,13>) sage: sum(p.volume(t) for t in triangulation) 42 sage: p0 = PointConfiguration([(0,0),(+1,0),(-1,0),(0,+1),(0,-1)]) sage: p0.pushing_triangulation(point_order=[1,2,0,3,4]) (<1,2,3>, <1,2,4>) sage: p0.pushing_triangulation(point_order=[0,1,2,3,4]) (<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>)
The same triangulation with renumbered points 0->4, 1->0, etc:
sage: p1 = PointConfiguration([(+1,0),(-1,0),(0,+1),(0,-1),(0,0)]) sage: p1.pushing_triangulation(point_order=[4,0,1,2,3]) (<0,2,4>, <0,3,4>, <1,2,4>, <1,3,4>)
- restrict_to_connected_triangulations(connected=True)#
Restrict to connected triangulations.
NOTE:
Finding non-connected triangulations requires the optional TOPCOM package.
INPUT:
connected
– boolean. Whether to restrict to triangulations that are connected by bistellar flips to the regular triangulations.
OUTPUT:
A new
PointConfiguration
with the same points, but whose triangulations will all be in the connected component. SeePointConfiguration
for details.EXAMPLES:
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]]) sage: p A point configuration in affine 2-space over Integer Ring consisting of 5 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular. sage: len(p.triangulations_list()) 4 sage: PointConfiguration.set_engine('topcom') # optional - topcom sage: p_all = p.restrict_to_connected_triangulations(connected=False) # optional - topcom sage: len(p_all.triangulations_list()) # optional - topcom 4 sage: p == p_all.restrict_to_connected_triangulations(connected=True) # optional - topcom True sage: PointConfiguration.set_engine('internal')
- restrict_to_fine_triangulations(fine=True)#
Restrict to fine triangulations.
INPUT:
fine
– boolean. Whether to restrict to fine triangulations.
OUTPUT:
A new
PointConfiguration
with the same points, but whose triangulations will all be fine. SeePointConfiguration
for details.EXAMPLES:
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]]) sage: p A point configuration in affine 2-space over Integer Ring consisting of 5 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular. sage: len(p.triangulations_list()) 4 sage: p_fine = p.restrict_to_fine_triangulations() sage: len(p.triangulations_list()) 4 sage: p == p_fine.restrict_to_fine_triangulations(fine=False) True
- restrict_to_regular_triangulations(regular=True)#
Restrict to regular triangulations.
NOTE:
Regularity testing requires the optional TOPCOM package.
INPUT:
regular
–True
,False
, orNone
. Whether to restrict to regular triangulations, irregular triangulations, or lift any restrictions on regularity.
OUTPUT:
A new
PointConfiguration
with the same points, but whose triangulations will all be regular as specified. SeePointConfiguration
for details.EXAMPLES:
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]]) sage: p A point configuration in affine 2-space over Integer Ring consisting of 5 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular. sage: len(p.triangulations_list()) 4 sage: PointConfiguration.set_engine('topcom') # optional - topcom sage: p_regular = p.restrict_to_regular_triangulations() # optional - topcom sage: len(p_regular.triangulations_list()) # optional - topcom 4 sage: p == p_regular.restrict_to_regular_triangulations(regular=None) # optional - topcom True sage: PointConfiguration.set_engine('internal')
- restrict_to_star_triangulations(star)#
Restrict to star triangulations with the given point as the center.
INPUT:
origin
–None
or an integer or the coordinates of a point. An integer denotes the index of the central point. IfNone
is passed, any restriction on the starshape will be removed.
OUTPUT:
A new
PointConfiguration
with the same points, but whose triangulations will all be star. SeePointConfiguration
for details.EXAMPLES:
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]]) sage: len(list( p.triangulations() )) 4 sage: p_star = p.restrict_to_star_triangulations(0) sage: p_star is p.restrict_to_star_triangulations((0,0)) True sage: p_star.triangulations_list() [(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>)] sage: p_newstar = p_star.restrict_to_star_triangulations(1) # pick different origin sage: p_newstar.triangulations_list() [(<1,2,3>, <1,2,4>)] sage: p == p_star.restrict_to_star_triangulations(star=None) True
- restricted_automorphism_group()#
Return the restricted automorphism group.
First, let the linear automorphism group be the subgroup of the affine group \(AGL(d,\RR) = GL(d,\RR) \ltimes \RR^d\) preserving the \(d\)-dimensional point configuration. The affine group acts in the usual way \(\vec{x}\mapsto A\vec{x}+b\) on the ambient space.
The restricted automorphism group is the subgroup of the linear automorphism group generated by permutations of points. See [BSS2009] for more details and a description of the algorithm.
OUTPUT:
A
PermutationGroup
that is isomorphic to the restricted automorphism group is returned.Note that in Sage, permutation groups always act on positive integers while lists etc. are indexed by nonnegative integers. The indexing of the permutation group is chosen to be shifted by
+1
. That is, the transposition(i,j)
in the permutation group corresponds to exchange ofself[i-1]
andself[j-1]
.EXAMPLES:
sage: pyramid = PointConfiguration([[1,0,0],[0,1,1],[0,1,-1],[0,-1,-1],[0,-1,1]]) sage: G = pyramid.restricted_automorphism_group() sage: G == PermutationGroup([[(3,5)], [(2,3),(4,5)], [(2,4)]]) True sage: DihedralGroup(4).is_isomorphic(G) True
The square with an off-center point in the middle. Note that the middle point breaks the restricted automorphism group \(D_4\) of the convex hull:
sage: square = PointConfiguration([(3/4,3/4),(1,1),(1,-1),(-1,-1),(-1,1)]) sage: square.restricted_automorphism_group() Permutation Group with generators [(3,5)] sage: DihedralGroup(1).is_isomorphic(_) True
- secondary_polytope()#
Calculate the secondary polytope of the point configuration.
For a definition of the secondary polytope, see [GKZ1994] page 220 Definition 1.6.
Note that if you restricted the admissible triangulations of the point configuration then the output will be the corresponding face of the whole secondary polytope.
OUTPUT:
The secondary polytope of the point configuration as an instance of
Polyhedron_base
.EXAMPLES:
sage: p = PointConfiguration([[0,0],[1,0],[2,1],[1,2],[0,1]]) sage: poly = p.secondary_polytope() sage: poly.vertices_matrix() [1 1 3 3 5] [3 5 1 4 1] [4 2 5 2 4] [2 4 2 5 4] [5 3 4 1 1] sage: poly.Vrepresentation() (A vertex at (1, 3, 4, 2, 5), A vertex at (1, 5, 2, 4, 3), A vertex at (3, 1, 5, 2, 4), A vertex at (3, 4, 2, 5, 1), A vertex at (5, 1, 4, 4, 1)) sage: poly.Hrepresentation() (An equation (0, 0, 1, 2, 1) x - 13 == 0, An equation (1, 0, 0, 2, 2) x - 15 == 0, An equation (0, 1, 0, -3, -2) x + 13 == 0, An inequality (0, 0, 0, -1, -1) x + 7 >= 0, An inequality (0, 0, 0, 1, 0) x - 2 >= 0, An inequality (0, 0, 0, -2, -1) x + 11 >= 0, An inequality (0, 0, 0, 0, 1) x - 1 >= 0, An inequality (0, 0, 0, 3, 2) x - 14 >= 0)
- classmethod set_engine(engine='auto')#
Set the engine used to compute triangulations.
INPUT:
engine
– either ‘auto’ (default), ‘internal’, or ‘topcom’. The latter two instruct this package to always use its own triangulation algorithms or TOPCOM’s algorithms, respectively. By default (‘auto’), internal routines are used.
EXAMPLES:
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]]) sage: p.set_engine('internal') # to make doctests independent of TOPCOM sage: p.triangulate() (<1,3,4>, <2,3,4>) sage: p.set_engine('topcom') # optional - topcom sage: p.triangulate() # optional - topcom (<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>) sage: p.set_engine('internal') # optional - topcom
- star_center()#
Return the center used for star triangulations.
See also
OUTPUT:
A
Point
if a distinguished star central point has been fixed.ValueError
exception is raised otherwise.EXAMPLES:
sage: pc = PointConfiguration([(1,0),(-1,0),(0,1),(0,2)], star=(0,1)); pc A point configuration in affine 2-space over Integer Ring consisting of 4 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular, and star with center P(0, 1). sage: pc.star_center() P(0, 1) sage: pc_nostar = pc.restrict_to_star_triangulations(None) sage: pc_nostar A point configuration in affine 2-space over Integer Ring consisting of 4 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular. sage: pc_nostar.star_center() Traceback (most recent call last): ... ValueError: The point configuration has no star center defined.
- triangulate(verbose=False)#
Return one (in no particular order) triangulation.
INPUT:
verbose
– boolean. Whether to print out the TOPCOM interaction, if any.
OUTPUT:
A
Triangulation
satisfying all restrictions imposed. Raises aValueError
if no such triangulation exists.EXAMPLES:
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]]) sage: p.triangulate() (<1,3,4>, <2,3,4>) sage: list( p.triangulate() ) [(1, 3, 4), (2, 3, 4)]
Using TOPCOM yields a different, but equally good, triangulation:
sage: p.set_engine('topcom') # optional - topcom sage: p.triangulate() # optional - topcom (<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>) sage: list( p.triangulate() ) # optional - topcom [(0, 1, 2), (0, 1, 4), (0, 2, 4), (1, 2, 3)] sage: p.set_engine('internal') # optional - topcom
- triangulations(verbose=False)#
Returns all triangulations.
verbose
– boolean (default:False
). Whether to print out the TOPCOM interaction, if any.
OUTPUT:
A generator for the triangulations satisfying all the restrictions imposed. Each triangulation is returned as a
Triangulation
object.EXAMPLES:
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]]) sage: iter = p.triangulations() sage: next(iter) (<1,3,4>, <2,3,4>) sage: next(iter) (<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>) sage: next(iter) (<1,2,3>, <1,2,4>) sage: next(iter) (<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>) sage: p.triangulations_list() [(<1,3,4>, <2,3,4>), (<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>), (<1,2,3>, <1,2,4>), (<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)] sage: p_fine = p.restrict_to_fine_triangulations() sage: p_fine.triangulations_list() [(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>), (<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)] Note that we explicitly asked the internal algorithm to compute the triangulations. Using TOPCOM, we obtain the same triangulations but in a different order:: sage: p.set_engine('topcom') # optional - topcom sage: iter = p.triangulations() # optional - topcom sage: next(iter) # optional - topcom (<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>) sage: next(iter) # optional - topcom (<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>) sage: next(iter) # optional - topcom (<1,2,3>, <1,2,4>) sage: next(iter) # optional - topcom (<1,3,4>, <2,3,4>) sage: p.triangulations_list() # optional - topcom [(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>), (<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>), (<1,2,3>, <1,2,4>), (<1,3,4>, <2,3,4>)] sage: p_fine = p.restrict_to_fine_triangulations() # optional - topcom sage: p_fine.set_engine('topcom') # optional - topcom sage: p_fine.triangulations_list() # optional - topcom [(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>), (<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>)] sage: p.set_engine('internal') # optional - topcom
- triangulations_list(verbose=False)#
Return all triangulations.
INPUT:
verbose
– boolean. Whether to print out the TOPCOM interaction, if any.
OUTPUT:
A list of triangulations (see
Triangulation
) satisfying all restrictions imposed previously.EXAMPLES:
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1]]) sage: p.triangulations_list() [(<0,1,2>, <1,2,3>), (<0,1,3>, <0,2,3>)] sage: list(map(list, p.triangulations_list())) [[(0, 1, 2), (1, 2, 3)], [(0, 1, 3), (0, 2, 3)]] sage: p.set_engine('topcom') # optional - topcom sage: p.triangulations_list() # optional - topcom [(<0,1,2>, <1,2,3>), (<0,1,3>, <0,2,3>)] sage: p.set_engine('internal') # optional - topcom
- volume(simplex=None)#
Find n! times the n-volume of a simplex of dimension n.
INPUT:
simplex
(optional argument) – a simplex from a triangulation T specified as a list of point indices.
OUTPUT:
If a simplex was passed as an argument: n!*(volume of
simplex
).Without argument: n!*(the total volume of the convex hull).
EXAMPLES:
The volume of the standard simplex should always be 1:
sage: p = PointConfiguration([[0,0],[1,0],[0,1],[1,1]]) sage: p.volume( [0,1,2] ) 1 sage: simplex = p.triangulate()[0] # first simplex of triangulation sage: p.volume(simplex) 1
The square can be triangulated into two minimal simplices, so in the “integral” normalization its volume equals two:
sage: p.volume() 2
Note
We return n!*(metric volume of the simplex) to ensure that the volume is an integer. Essentially, this normalizes things so that the volume of the standard n-simplex is 1. See [GKZ1994] page 182.